- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Pottackal, Neethu (2)
-
Abbaspourrad, Alireza (1)
-
Ahmed, Faravi (1)
-
Ajayan, Pulickel_M (1)
-
Bennett, Matthew_R (1)
-
Davachi, Seyed Mohammad (1)
-
Ji, Yue (1)
-
Meredith, J_Carson (1)
-
Meyer, Matthew_D (1)
-
Miller, Corwin (1)
-
Mohammed, Zaheeruddin (1)
-
Nur, Mohammed_Intishar (1)
-
Rahman, Muhammad_M (1)
-
Rangari, Vijaya (1)
-
Torabi, Hooman (1)
-
Zahin, Farhan (1)
-
Zinke, Aasha (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract There is growing interest among the public and scientific community toward the use of probiotics to potentially restore the composition of the gut microbiome. With the aim of preparing eco-friendly probiotic edible films, we explored the addition of probiotics to the seed mucilage films of quince, flax, and basil. These mucilages are natural and compatible blends of different polysaccharides that have demonstrated medical benefits. All three seed mucilage films exhibited high moisture retention regardless of the presence of probiotics, which is needed to help preserve the moisture/freshness of food. Films from flax and quince mucilage were found to be more thermally stable and mechanically robust with higher elastic moduli and elongation at break than basil mucilage films. These films effectively protected fruits against UV light, maintaining the probiotics viability and inactivation rate during storage. Coated fruits and vegetables retained their freshness longer than uncoated produce, while quince-based probiotic films showed the best mechanical, physical, morphological and bacterial viability. This is the first report of the development, characterization and production of 100% natural mucilage-based probiotic edible coatings with enhanced barrier properties for food preservation applications containing probiotics.more » « less
-
Zinke, Aasha; Pottackal, Neethu; Zahin, Farhan; Nur, Mohammed_Intishar; Ahmed, Faravi; Ji, Yue; Mohammed, Zaheeruddin; Meyer, Matthew_D; Miller, Corwin; Bennett, Matthew_R; et al (, Advanced Functional Materials)Abstract Egg waste is a major contributor to global food waste, accounting for 15% of discarded food in the United States. Typically, eggs have a shorter shelf life at room temperature and are preserved in refrigeration from production to consumption. However, maintaining constant refrigeration is energy‐intensive and expensive. Here, a bionanocomposite coating has been developed that incorporates each element of eggs – egg white, yolk, and eggshell – to increase the shelf life of fresh eggs without requiring further refrigeration. The quality of eggs has been successfully preserved for up to three weeks at room temperature. The coated eggs maintain the highest grade (AA) and exhibit improved Haugh Unit (HU), Yolk Index (YI), and pH compared to uncoated eggs. The coating reduces weight loss by ≈37% with an increase in HU (≈12.5%) and YI (≈13.9%). Morphological analysis reveals strong adhesion of the coating to the eggshell surface, showcasing promising barrier properties. The coating demonstrates an optimal combination of oxygen permeability (≈12.2 cm3 µm m−2 d−1 kPa−1) and water vapor transmission (≈31.5 g mm m−2per day) with excellent antimicrobial properties. Overall, this approach of repurposing eggs into a high‐performance coating shows a promising viable alternative to refrigeration and a solution to combat egg waste.more » « less
An official website of the United States government
